

Determining Consumer Purchase Intentions Based on Innovative Work Behavior: A Qualitative Study Within the Framework of The Uncanny Valley Theory

Begüm MARAL¹
Sefa CEYHAN²
Ayben CEYHAN GÜNEY³

Received:20.07.2025, Accepted: 26.12.2025
10.5281/zenodo.18148404

Abstract

Advances in artificial intelligence technologies have led to the widespread use of human-like systems in marketing communications. Applications such as virtual influencers, chatbots, and humanoid robots are becoming increasingly realistic to facilitate consumer interaction. However, these applications can cause discomfort among consumers, especially after a certain level of realism is achieved. This phenomenon is explained in literature as the ‘uncanny valley’ effect. This study aims to examine the effects of interactions between information technology sector employees and human-like digital entities on their purchase intentions and innovative work behaviors within the framework of the Uncanny Valley Theory. The research was conducted with IT sector employees in an internal customer role. These participants also have the potential to represent external customer behavior as users of products and services. The research findings reveal that innovative work behavior is a complex process that influences consumer purchase intentions. Innovative products consider not only the functionality of the product but also human-like qualities such as reliability, emotionality, practicality of use and social acceptance. Therefore, the findings obtained because of this study not only fill the gap in literature but also comprehensively address the behavioral effects from both the internal customer (employee) and external customer (consumer) perspectives.

Keywords: Uncanny Valley Theory, Innovative Work Behavior, Purchase Intention, Digital Marketing

JEL Code: M31, M1

¹ Assist Prof., Istanbul Nisantasi University, Turkey, begum.maral@nisantasi.edu.tr, <http://orcid.org/0000-0002-0013-0281>

² Assist Prof., Istanbul Nisantasi University, Turkey, sefa.ceyhan@nisantasi.edu.tr, <http://orcid.org/0000-0002-3788-0756>

³ Assist Prof., Istanbul Nisantasi University, Turkey, ayben.ceyhan@nisantasi.edu.tr, <http://orcid.org/0000-0001-5191-9787>

1. Introduction

The accelerating integration of advanced technologies into organizational environments is reshaping both strategic business practices and individual employee behaviors. Among these technologies, artificial intelligence (AI) and robotics have emerged as transformative forces, influencing how companies operate and how employees engage with new tools. As these systems become increasingly human in appearance and behavior, their use has become widespread not only in marketing but also in operational and managerial contexts.

One critical framework that helps explain human responses to such technologies is the Uncanny Valley Theory, first proposed by Masahiro Mori. This theory posits that people generally respond positively to artificial agents that resemble humans, but that there is a threshold beyond which increasing similarity leads to discomfort and disgust. While this response has traditionally been studied in consumer contexts, it is also gaining increasing importance in workplace settings.

Particularly in organizations in sectors driven by digital innovation, such as information technology, employees' emotional and psychological responses to AI-enabled systems play a central role in understanding technology adoption. Research shows that perceptions of trust, comfort, and human-likeness significantly influence employees' willingness to interact with these tools. The Technology Acceptance Model (TAM) supports this view by emphasizing how perceived ease of use and usefulness are shaped by subjective experiences and emotional responses during human-technology interactions.

In light of these developments, the role of emotional responses (especially feelings of unease associated with hyper-realistic AI systems) is gaining attention as a factor that can shape both employee innovative behavior and decision-making processes such as technology use or procurement. This is particularly important in environments where rapid technological transformation continues, and employee adaptability is crucial.

The primary objective of this study is to examine the effects of employees' interactions with technological systems on purchase intentions and innovative work behaviors, drawing on the Uncanny Valley Theory perspective. Specifically, the research aims to analyze how the sense of unease arises when IT workers interact with artificial intelligence and robotic systems impacts their work processes.

2. Literature Review

2.1. Uncanny Valley Theory

The term “Uncanny Valley” was first developed by Masahiro Mori (1970). The Uncanny Valley Theory argues that the perception of human-like artificial intelligence models or robots is initially positive as the level of similarity increases, but when this similarity crosses a certain threshold and reaches the “almost human” level, a sudden emotional break occurs. At this breaking point, individuals experience intense discomfort, uneasiness and alienation (Ho and MacDorman, 2010: 1508-1509).

This uncanny effect is exacerbated especially when there is a discrepancy between the figure's appearance and the realism of her movements. For example, a human-like robot smiling slightly, or a realistic prosthetic hand moving, can create a cognitive dissonance in the viewer, leading to a disturbing experience. Mori associated this phenomenon with an intuitive disturbance of “the movement of a dead body” and described it as “falling into the uncanny valley”. He explained the phenomenon with a characteristic graph showing the relationship between human likeness and emotional reactions (Mori, MacDorman and Kageki, 2012: 98-100).

Many studies have adopted the Uncanny Valley Theory as the theoretical basis for explaining human-machine interaction (Luo vd., 2019; Mende vd., 2019; Ho and MacDorman, 2010; Davenport vd., 2020; Kumar and Jhawar, 2024). In this context, Ho and MacDorman (2010) proposed two basic dimensions - perceived humaneness and eeriness - for the evaluation of the uncanny effect. In the model they later developed, in addition to these two dimensions, “attractiveness” was also included among the evaluation criteria (Ho and MacDorman, 2017).

Pavlidou (2021: 15) defines this effect as the cognitive tension that human-like but not entirely human-like designs create in the individual due to the inconsistency in realism. Similarly, Thaler et al. (2020) compared human-controlled avatars with AI-based characters and found that the perception of “eeriness” increased with increasing human resemblance.

Developments in the field of artificial intelligence have significantly transformed human-machine relations. Machines equipped with artificial intelligence can show human-like characteristics with their behaviors, which causes individuals to perceive them as semi-human. Companies are integrating humanoid qualities into artificial intelligence systems to facilitate interaction with consumers. However, the increase in such features can create a sense of uncanny in individuals (Poushneh and Gearhart, 2025: 1). This is especially evident in AI-based marketing tools such as virtual influencers and chatbots (Erdinç and Soydaş, 2024: 1).

In this framework, the Uncanny Valley Theory offers a functional theoretical infrastructure for understanding the emotional reactions, trust levels and behavioral tendencies of individuals in digital environments where human likeness is transformed into a marketing or workforce interaction tool. The theory is a critical

tool in the analysis of today's working life and digital consumption relations, especially in terms of bridging the discomfort created by artificial intelligence-based systems on users and the reasons for their acceptance or rejection behavior towards these systems.

2.1.1 Uncanny Valley Theory Sub-Dimensions

In line with the Uncanny Valley Theory, various dimensions have been proposed to systematically measure the emotional responses evoked by human similarity. One of the first studies conducted in this context, Bartneck et al. (2009), developed a five-dimensional rating system for human-robot interaction: anthropomorphism, liveliness, likeability, perceived intelligence, and perceived safety. Ho and MacDorman (2010) further elaborated this approach, explaining the uncanny valley effect under three main factors: perceived humanity, attractiveness, and creepiness.

Table 1 used in this study reflects the multidimensional perceptual planes that demonstrate how people perceive human-like artificial entities (e.g., robots, digital avatars, virtual influencers) within the context of the Uncanny Valley Theory. The table is derived from the scales of Thaler et al. (2020) and Ho and MacDorman (2017).

Table 1. Three-Dimensional Scale Structure for Uncanny Valley Perception

Humanness	Eeriness	Attractiveness
Inanimate↔Living	Dull↔Freaky	Ugly↔Beautiful
Synthetic↔Real	Predictable↔Eerie	Repulsive↔Agreeable
Mechanical	Plain↔Weird	Crude↔Stylish
Movement↔Biological Movement		
Human-Made↔Humanlike	Ordinary↔Supernatural	Messy↔Sleek
Without Definite Lifespan↔Mortal	Boring↔Shocking	Unattractive ↔ Attractive
Artificial ↔ Natural	Uninspiring↔Spine-tingling	
	Predictable↔Thrilling	
	Bland↔Uncanny	
	Unemotional↔Hair-raising	
	Familiar ↔ Uncanny	

Source: Thaler et al. (2020) and Ho and MacDorman (2017).

The dimensions of humanity, creepiness, and attractiveness in Table 1 reveal multilayered semantic scale patterns reflecting the extent to which participants perceive the AI-enabled digital entities they encounter as human-like, how they evaluate these entities aesthetically and emotionally, and how uncomfortable they feel toward them. These structures enable analysis of both individual perceptions of technology and the behavioral implications of these perceptions.

The Humanity, Eeriness, and Attractiveness dimensions used in this study were adapted from scales developed by Ho and MacDorman (2010, 2017) and Thaler et al. (2020). The Humanity dimension, which assesses the extent to which artificial or synthetically produced entities resemble humans, measures participants' perception level with dichotomous expressions such as "inanimate-living," "mechanical-moving-biological-moving," and "artificial-natural." The Eeriness dimension measures feelings of discomfort and unease toward artificial entities with expressions such as "boring-weird," "predictable-scary," and "ordinary-uninteresting-shocking." In particular, the perceived level of eeriness can trigger critical attitudes, such as trust or rejection, in consumers' interactions with technology. The "Attractiveness" dimension, expressed through aesthetic judgments such as "ugly-beautiful", "unattractive-nice", "vulgar-stylish", determines the level of appreciation individuals have for the technological entities they encounter, as shown in Table 1 (Ho and MacDorman, 2010: 1513; 2017: 132). This dimension can be decisive in understanding both individuals' purchase intentions and their level of willingness to work with such systems.

Evaluations based on these three dimensions enable the Uncanny Valley effect to be not only theoretical but also measurable and functional. This multidimensional approach to understanding the cognitive and emotional effects of human-like technological assets on individuals is applicable not only in marketing and consumer behavior, but also in human resources, workplace technologies and user experience design.

2.2 Purchase Intention

Recent developments in technology have highlighted that interactions with digital systems influence not only operational workflows but also individual consumer decisions. One area gaining increasing scholarly interest is how human-like digital agents and AI-enabled interfaces shape consumer responses—especially in relation to purchase intention, a key indicator of consumer decision-making. Within this context, the concept of the uncanny valley has been explored as a possible factor influencing how individuals evaluate and respond to these technologies.

Purchase intention generally refers to a consumer's likelihood of purchasing a product or service or their willingness to spend money on it (Ajzen et al., 2004; Spears and Singh, 2004: 56). Empirical studies on digital marketing factors indicate that this intention is not fixed but can be influenced by various factors, such as the perceived authenticity and relatability of the source delivering the message.

While virtual influencers have gained popularity for their role in increasing brand awareness and visibility, their effectiveness in driving actual purchases is limited. This limitation is often attributed to their artificial nature, lack of personal connection with target audiences, and underdeveloped parasocial relationships (Lou et al., 2023). In contrast, human influencers tend to evoke stronger feelings of identification and trust, which translates to higher consumer purchase intentions (Song et al., 2024).

However, research on anthropomorphic digital agents suggests that such systems can have a positive impact on consumer behavior under the right circumstances (Zhang and Wang, 2025; Thomas and Fowler, 2021; El Hedhli et al., 2023). For example, when users perceive a sense of familiarity when interacting with AI systems or IT-based services, they are more likely to purchase (Bae et al., 2024). Similarly, customized messages from chatbots have been shown to be more persuasive than standard advertisements, increasing consumers' purchase intentions (Kim et al., 2023).

However, the Uncanny Valley Theory also presents a potential downside. Some studies suggest that consumers may feel uneasy or uncomfortable when digital systems become too human-like, leading to negative behavioral outcomes. Pavlidou (2021) observed that such discomfort reduces both purchase intention and willingness to reuse chatbot services. Similarly, Song and Shin (2022) found that increased anthropomorphism in chatbots negatively impacts consumer sentiment. Kim et al. (2024) also noted that highly personalized messages from chatbots may reduce, rather than increase, purchase motivation due to their perceived lack of naturalness.

In overcoming these challenges, social cues emerge as an important moderator. Visual or contextual cues, such as the presence of a real human figure alongside a digital entity, can help alleviate the discomfort associated with human-like technologies. These social cues reduce the sense of creepiness and increase user sensitivity, as supported by the findings of Gutuleac et al. (2024: 1421). According to Nass and Moon (2000), when a digital entity provides sufficient social cues, individuals instinctively begin to perceive it as human.

In this context, Uncanny Valley Theory provides an explanatory framework for understanding how consumers' interactions with AI-based digital assets influence their purchase intentions. The variability of perceived trust, closeness, or threat levels based on human similarity can directly influence cognitive tendencies such as purchase intent, making the theory critical for digital marketing strategies.

2.3 Uncanny Valley and Purchase Intention

As artificial intelligence-based entities are used more frequently, especially in consumer interactions, the impact of uncanny sensation on purchase decisions has become an important research topic. Studies conducted in this direction show that the feeling of uncanny may directly or indirectly affect purchase intention.

Sun and Xiao (2024) stated that robots with high human resemblance, but imperfect robots create a feeling of discomfort in the user, and these figures reduce the level of approval. This situation weakens the consumer's relationship with robots, resulting in a decrease in purchase intention. Similarly, Mara et al. (2022) found that purchase intention decreases as human similarity increases.

In a study conducted in the context of e-commerce, Song and Shin (2024: 441-450) stated that chatbots with human-like movements and appearance negatively affect both purchase and re-use intentions by damaging the sense of trust. Pavlidou (2021) also stated that hyper-realistic chatbots create a sense of uncanny in the user and reduce the desire to continue the interaction and purchase intention.

Pan et al. (2024: 3243-3244) divided virtual influencers into three groups according to their level of realism and found that moderately realistic influencers created a sense of uncanny in consumers, which decreased purchase intentions. In contrast, hyper-realistic influences were found to increase purchase intention.

While Braun and Dickmann (2019) emphasize the uncanny valley effect of human-like robots that negatively reflect on product evaluations; Nissen and Jahn (2021) showed that this feeling directly affects consumers' intention to use through their level of trust. Correa (2022: 171) revealed that digital figures exhibiting high humanoid behavior reduce purchase intention due to low trust perception and that trust is a determinant variable in this relationship.

However, not all studies argue that the uncanny valley effect necessarily has negative consequences. Jang et al. (2023) found that the feeling of uncanny can be offset by perceived similarity, attractiveness and authenticity towards the virtual influencer, and that these positive factors can increase purchase intentions. This suggests that the uncanny valley effect can be overcome under certain conditions.

The Uncanny Valley Theory is not only explained through human similarity but also supported by various psychological and cognitive factors. For example, the concept of trust plays a critical role in many studies in this field. Saygin et al. (2012: 6-8) stated that the mismatch between appearance and behavior triggers a sense of uncanny by causing a prediction error at the brain level. Nissen and Jahn (2021: 360-362) found that moderately human-like robots reduce both intuitive and cognitive trust. Pavlidou (2021) found that hyper-realistic chatbots weaken user trust and intention to use again.

Likeability and aesthetic perception are also concepts directly related to the uncanny valley. Bartneck et al. (2009) set out with the assumption that Android robots may not be liked as much as humans, but the results did not directly support this assumption. Mara et al. (2022) drew attention to the delicate balance between aesthetics and reality perception by stating that robots with low and medium human resemblance received more positive reactions.

Lack of empathy and lack of emotional interaction are also among the factors that reinforce the feeling of uncanny. Luo et al. (2019: 938) stated that in the context of chatbots, these deficiencies become more evident in areas related to personal needs and increase the sense of uncanny in consumers.

In addition, perceptual factors such as perceived authenticity and attractiveness can transform this effect. Jang et al. (2023) emphasized that the

humanoid characteristics of virtual influencers may initially create a sense of uncanny, but this effect may disappear if they are perceived as authentic and attractive. Correa (2022: 156-171) has revealed that digital assistants with highly humanistic behavior are perceived as ‘fraudulent’ and cause emotions such as fear and anger, which are decisive factors in trust and purchase intent.

Poushneh and Gearhart's (2025:3) study showed that human-like characteristics such as perceived autonomy, competence, and social presence in AI-based entities can both create a sense of strangeness in consumers and influence purchase intentions. Specifically, perceptions of competence were found to increase purchase intention by reducing strangeness.

As a result, the Uncanny Valley Theory recognizes the possibility of a more comprehensive understanding of purchasing abilities for digital assets, not only through aesthetic perceptions, but also by considering multifaceted factors such as trust, authenticity, availability, empathy, and attractiveness. This theory provides a powerful theoretical tool for evaluating the effects of Robot-Human Interaction mechanisms on consumer behavior in digital marketing strategies.

2.4 Innovative Work Behavior

One of the most fundamental features of human nature is the desire to innovate. The effort to sustain life and reach better conditions has been one of the basic dynamics of human behavior in the evolutionary process. This tendency has become even more visible in the context of rapidly developing technology and digital transformation (Büyükbeşe and Doğan, 2022:175).

Perceived novelty is the interest or curiosity aroused in a user when encountering a new product/experience (Choi et al., 2017). Employees' developing and adopting innovative ideas and applying new methods enable organizations to achieve success in dynamic and competitive environments (Yuan and Woodman, 2010:323). Innovative work behavior includes not only the generation of new and useful ideas but also the implementation of these ideas (De Jong and Den Hartog, 2010:24).

Yuan and Woodman (2010) stated that innovative behaviors have positive effects on job performance and employee image. Similarly, Scott and Bruce (1994:580) stated that individual characteristics, leadership style, work environment and social influences are determinant on innovative behavior. Factors such as “intrinsic interest”, “creativity-oriented work behavior” and “organizational support” have been found to lead employees towards innovation.

Janssen (2000:288) defined innovative work behavior as the deliberate creation, introduction and implementation of new ideas within the work role, group or organization to improve performance and stated that fair distribution of rewards

increases this behavior. This definition is based on a broader conceptualization developed by West (1989) and West and Farr (1989).

Ulusal and Yüreğir (2020:18) found that factors such as leadership, career stage, managerial expectations, systematic problem solving and support for innovation are significantly related to individual innovative behavior. They also emphasized that innovative behavior could occur at different stages such as analyzing opportunities, identifying performance gaps, generating solutions, developing, testing and commercializing ideas.

De Jong and Den Hartog (2007:43) evaluated innovative behavior in two main stages: idea generation and idea implementation. In this process, the influence of leaders is important in terms of both encouraging ideas and realizing these ideas.

In this context, innovative work behavior is a critical indicator that reflects an individual's sensitivity to environmental changes and capacity to adopt technological innovations. It is anticipated that the Uncanny Valley effect may play a decisive role in this behavior by shaping individuals' emotional responses to technologies.

2.5 Relationship Between Innovative Work Behavior and Purchase Intentions

Purchase intention is an important concept that reflects consumers' mental and behavioral tendencies toward purchasing a product or service (Ajzen et al., 2004; Spears and Singh, 2004). Recent research has revealed that consumer purchase intention is influenced by many variables. For example, Lou et al. (2023) suggested that virtual influencers have a limited impact on purchase intention due to their lack of authenticity. Song et al. (2024) emphasized that real human influences have a stronger impact. Other studies have shown that consumer familiarity with AI-powered systems positively affects purchase intention (Zhang and Wang, 2025; Bae et al., 2024). Kim et al. (2023) argue that personalized chatbot messages generate a higher purchase intention compared to traditional advertising.

All these findings show that purchase intent is shaped by both the experience at digital touchpoints and the emotional connection established with technology. However, another notable theme that emerges in this literature focuses on how the uncanny valley effect influences this process. Sun and Xiao (2024) stated that robots with high human similarity, but imperfections reduce purchase intent by creating a feeling of discomfort in users. Similar results were also obtained by Mara et al. (2022) and Song and Shin (2024). Pavlidou (2021) emphasized that hyper-realistic chatbots create a sense of uncanniness in users, which negatively affects their purchase and reuse intentions. Many studies have shown that the perception of trust is a decisive factor in this relationship (Nissen and Jahn, 2021; Correa, 2022).

When approaching the subject from the perspective of innovative work behavior, a different point of view comes to the fore. Büyükbese and Doğan (2022)

state that individuals 'desire to innovate is an evolutionary-based behavior, while Yuan and Woodman (2010) reveal that employees' production and implementation of innovative ideas is critical to organizational success. De Jong and Den Hartog (2007) argue that this behavior develops through a two-stage process involving idea generation and idea implementation, while Janssen (2000) notes that this process contributes to job performance. Ulusal and Yüreğir (2020) found that factors such as leadership style, career stage, and organizational support influence individual innovative behavior.

Consumers may react differently to new products and services; some welcome innovations with enthusiasm, while others may be cautious due to uncertainty and risk. Individuals who adopt innovations more quickly are generally defined as 'innovative consumers' (Kambar, 2016:153). The perceived level of innovation has been shown to arouse interest and curiosity in users (Choi et al., 2017). Indeed, it has been shown that consumers' attitudes toward innovations can influence their purchasing behavior. Yapraklı and Güл (2021) noted that consumer innovativeness has a significant impact on online purchasing behavior. This finding indicates that innovative solutions, along with perceived benefits and value, can increase purchase intent for consumers.

However, despite all these findings, no empirical studies have been found in the literature that examine the direct relationship between innovative work behavior and purchase intention and examine both variables within the same analysis framework. Therefore, it is seen that the relationship between these two variables has not yet been addressed in a holistic manner. This deficiency is especially important in terms of organizations' efforts to understand the indirect impact of an innovative workforce not only on internal processes but also on external customer experience.

Indeed, when studies on innovative work behavior are examined (Yuan and Woodman, 2010; De Jong and Den Hartog, 2010; Scott and Bruce, 1994; Janssen, 2000; Ulusal and Yüreğir, 2020), it is seen that the focus is more on performance, job satisfaction, or organizational commitment. There are no examples in literature where it is associated with an external and customer-focused variable such as purchase intention. In this context, the relationship structure addressed in this study offers a unique contribution to filling an important gap in literature.

This research was conducted with IT sector employees, who are internal actors, rather than direct consumers. These individuals are not only 'internal customers' due to their roles within the organization, but also 'external customers' as users of products and services. As a result, it has been observed that the innovative work behaviors exhibited by employees not only contribute to organizational processes but also enable them to evaluate these behaviors from an external customer perspective through their own purchase intentions. This dual perspective enhances both the theoretical and practical value of the research,

offering the opportunity to analyze the relationship between innovative work behavior and purchase intention in a multi-layered manner.

3. Methodology

This research, which focuses on explaining a specific event or phenomenon in terms of its purpose, context and content, is designed using a descriptive research design, one of the qualitative research methods. Descriptive research describes data obtained from a specific sample (Armstrong, 1970). In line with this description, the purpose is to explain the relationship between employees' purchasing intentions and innovative work behavior within the framework of the uncanny valley theory. When the relevant literature is examined, it is seen that the uncanny valley theory has been the subject of many studies (Yam et al., 2021; Kim et al., 2022; Seymour et al., 2021; Natale et al., 2023). However, there is limited research on the relationship between purchase intention and innovative work behavior (Song and Shin, 2024; Pavlidou, 2021; Zhu, 2024). For this reason, the aim is to contribute to the gap in the relevant literature and to examine the relationship in question in depth in line with the relevant theory. It is believed that the purpose and objective of the research will contribute to the development of organizational structures dominated by innovation and artificial intelligence, in addition to the relevant literature.

3.1. Participants

Purpose and convenience sampling methods were used to identify employees who would participate in the study. This method will be useful in revealing how the relationship between consumer purchase intention and innovative business behavior developed within the framework of the uncanny valley theory (Moustakas, 1994; Büyüköztürk et al., 2012). The uncanny valley theory has been the subject of numerous studies (Yam et al., 2021; Kim et al., 2022; Seymour et al., 2021; Natale et al., 2023). However, it can be said that there are only a limited number of studies on the relationship between consumer purchasing behavior and innovative business behavior (Song ve Shin, 2024; Pavlidou, 2021; Zhu, 2024). For this reason, the aim is to reach company employees who have experience in this field. To this end, the snowball sampling method was chosen, and the process was continued by obtaining opinions from each respondent about the next respondent (Berg and Lune, 2019; Merriam, 2013). When the responses obtained from the participants were repeated, the process ended (Merriam, 2013).

Table 2. Participants

Participation Code	Interview Date	Gender	Marital Status	Age	Educational Status	Length of Experience at the Place of Work	Length of Experience in Their Sector	Title / Status
P1	10.02.2025	Male	Married	42-27	Postgraduate	10-15 Year	21 Year	Director
P2	06.02.2025	Female	Married	36-41	Associate degree	1-3 Year	1-3 Year	Information Tec.
P3	12.02.2015	Male	Married	30-35	Bachelor's Degree	10-15 Year	10-15 Year	Software Man.
P4	09.02.2025	Male	Married	36-41	Bachelor's Degree	21 Year	21 Year	Software Man.
P5	11.02.2025	Female	Single	30-35	Associate degree	4-9 Year	4-9 Year	Head of Depart.
P6	16.02.2025	Male	Single	42-47	Postgraduate	10-15 Year	16-21 Year	Information Tec.
P7	08.02.2025	Female	Single	30-35	Bachelor's Degree	4-9 Year	4-9 Year	Graphic Design.
P8	10.02.2025	Male	Married	42-47	Postgraduate	10-15 Year	10-15 Year	Software Man.
P9	11.02.2025	Male	Married	36-41	Postgraduate	4-9 Year	16-21 Year	Co-Founder
P10	16.02.2025	Male	Married	42-47	Postgraduate	4-9 Year	16-21 Year	Co-Founder
P11	12.02.2025	Male	Married	42-47	Postgraduate	10-15 Year	21 Year	Line Manager
P12	12.02.2025	Male	Married	42-47	Bachelor's Degree	10-15 Year	16-21 Year	Asst. Gen. Menag.
P13	09.02.2025	Male	Married	48-53	Bachelor's Degree	4-9 Year	21 Year	Director
P14	11.02.2025	Female	Single	30-35	Bachelor's Degree	10-15 Year	10-15 Year	Engineer

*Information Tec. = Information Technologies, Software Man. = Software Manager, Head of Depart. = Head of Department, Graphic Design. = Graphic Designer, Asst. Gen. Menag. = Assistant. General. Menager.

Source: Created by authors

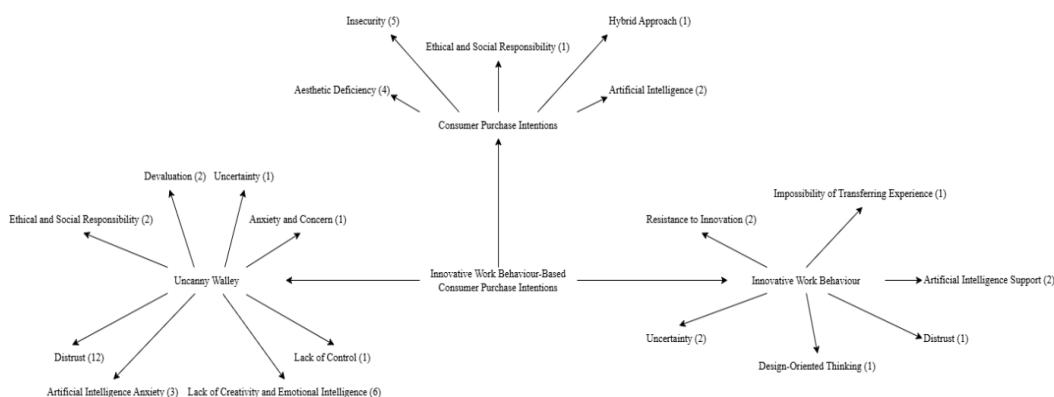
When examining the demographic findings related to the employees who participated in the study, the interviews took place in February 2025. According to the data obtained from the interviews, it can be stated that most participants were male. Similarly, it can be stated that most participants are married and between the ages of 30 and 47 on average. When examining the findings regarding the educational status of participants, it is seen that the majority are university graduates. In addition, findings related to participants having an average of 4-15 years of business and industry experience are presented in Table 2.

3.2. Data Collection Tools

The first document presented to participants in the field research conducted as part of the study was the informed consent form. (ICF). The purpose of the research in the ICF is clearly and explicitly stated, participation in the research is explained in detail as being entirely voluntary, and participants are informed that they have the right to terminate the interview at any time. The second document presented to participants is an open-ended questionnaire. (OQ). The purpose of the research in OQ includes information about the researcher, demographic questions about the participants (date of interview, time of interview, gender, marital status, age, education, length of work experience, length of experience in the sector, and

title/status), and open-ended questions. The open-ended questions prepared in line with the research objective were supported by both empirical research designs and relevant literature (Yam et al., 2021; Kim et al., 2022; Seymour et al., 2021; Natale et al., 2023; Song and Shin, 2024; Pavlidou, 2021; Zhu, 2024). The open-ended questions formulated in this regard are as follows: (1) How do immobile, synthetic, and mechanically moving artificial intelligence systems make you feel, given that they are man-made and have an uncertain lifespan? What do you think are the most distinctive features that distinguish such artificial systems from natural ones? How do these aspects of artificial intelligence affect your trust in it or your desire to use it? (2) What emotions does the development of artificial intelligence and its ability to exhibit human-like behavior evoke in you? Do you find it frightening, supernatural, shocking, exciting (in the sense of suspense), strange, scary, or odd? Why? (3) Can content or recommendations generated by artificial intelligence sometimes appear ugly, crude, repulsive, or disorganized? How does your trust in or interaction with artificial intelligence change when you have such perceptions? Would you share your experiences? (4) How do AI-generated content and recommendations influence your purchasing intentions? For example, please elaborate on your future purchasing intentions for a product or service recommended by AI. (5) Do you research or obtain processes, techniques, or ideas related to innovation? (5a) Please elaborate. Please enlighten us with examples from your experiences. (6) What approaches do you take when it comes to new ideas, plans, or activities? (6a) Please elaborate. Please enlighten us with examples from your experiences. The first draft of the open-ended questionnaire form created in line with the relevant questions was reviewed by five academics who experts on the subject are. After receiving feedback and making corrections, the first participant was interviewed, information was obtained about other participants who could be reached at the end of the interview, and the chain continued in this way. The interviews were conducted in isolated environments and lasted an average of 17 minutes. Participants were also informed that no statements revealing the name of the institution, the name of the person, institutional information, or the identity of the institution should be used during the interview.

3.3. Data Analysis


Content analysis, which is considered a qualitative research technique, was chosen for the research analysis process. Before analyzing the transcripts obtained from the field research, each participant was assigned a letter P and a sequential number. For example, the participant named S... C... was coded as P1, the participant named B... M... was coded as P2, and the participant named A... C... G... was coded as P3. The authors of the study used the cross-reading method to determine the main themes. In this method, all authors read the texts independently and determine themes. Then, the themes created by each author are combined to create common main themes and sub-themes (Lazarus and Folkman, 1984; Schuler, 1982). Inductive content analysis method was preferred throughout this process. At the end of this process, the reliability analysis suggested by Miles and Huberman (1994) was used. As a result of the analysis, the reliability of the study was determined as [Reliability = 14 / (14+5)] 73%.

3.4. COREQ Criteria

Qualitative research requires certain requirements and criteria. To meet these requirements and criteria, the COREQ (Consolidated Criteria for Reporting Qualitative Research) checklist, which is widely accepted in literature, is used (Tong et al., 2007). Each of the 32 items in the checklist measures the extent to which the research meets the qualitative requirement. In the detailed checks made in this direction, it was determined that this research met all the criteria and procedures.

4. Findings

As a result of the analysis of the participant responses obtained in line with the open-ended survey questions created within the scope of the scope of the research, three main categories and eight sub-categories were created. The visual of the main and sub-categories in question is given in Figure 1.

Figure 1. Main and Subcategories Formed Within the Scope of the Research
 Source: Created by authors

The subcategories obtained because of the analysis are as follows; (1) Uncertainty, (2) Devaluation, (3) Anxiety and Concern, (4) Ethical and Social Responsibility, (5) Distrust, (6) Lack of Control, (7) Artificial Intelligence Anxiety, and (8) Lack of Creativity and Emotional Intelligence. Sample participant comments related to these subcategories are as follows:

(1) Uncertainty: ‘Unlike organic entities, which have a cycle of birth, growth and death, their lifespan is uncertain, and their existence varies depending on their usage period or frequency of updating.’ **(P14)**

(2) Devaluation: The most important point that distinguishes it from the natural is that every job produced will be produced without emotional intelligence. This leads to devaluation. It will cause people to avoid using it unless it is necessary.’ **(P6)**

(3) Concern and Anxiety: Interpreting this data and seeing the possibility of developing technologies that can be used intelligently and for the benefit of humanity excites me in a positive way. However, I think that these technologies will develop for the benefit of the powers that are dominated by money and capital, rather than for the development and benefit of humanity. Therefore, this issue both frightens and worries me.' **(P4)**

(4) Ethics and Social Responsibility: 'My rationale is my belief that it will provide us with incredible convenience and benefits when used within a positive and ethical framework.' **(P8)**

(5) Insecurity: 'I would say that it is the feeling of insecurity that humans naturally feel towards the unknown.' **(P1)**

(6) Lack of control: The human-like nature of robotic structures and their uncontrollable nature are disturbing. If I were dealing with a human being, I could convince them somehow, but how can a human convince a machine that acts on its own?' **(P12)**

(7) Artificial Intelligence Anxiety: Artificial intelligence systems inspire both curiosity and anxiety.' **(P8)**

(8) Lack of Creativity and Emotional Intelligence: When I encounter an artificial intelligence product that seems fake, I feel neglected or worthless, and it makes me angry, whereas better-designed artificial intelligence processes do not bother me. The progress I observe makes me feel good about witnessing these processes.' **(P4)**

The seven subcategories related to innovative work behavior, which is another main category resulting from the analysis, are as follows: (1) Uncertainty, (2) Impossibility of Transferring Experience, (3) Distrust, (4) Design-Oriented Thinking, (5) Artificial Intelligence Support, (6) Resistance to Innovation, (7) Internalization. Sample participant comments related to these subcategories are as follows:

(1) Uncertainty: The responsibility that comes with the task I have taken on, due to the risk created by the uncertainty of the idea...' **(P1)**

(2) Impossibility of Transferring Experience: For example, applying the management arguments I learned from my own managers to the people I currently manage will not yield very productive results. This is because there is a significant difference in understanding, life experience, and perspective between my early career and those who are currently in the early stages of their careers.' **(P12)**

(3) Insecurity: I can give electric cars as an example. I want to buy one, but I won't make a purchase decision without seeing enough references and examples and hearing about long-term experiences. Or, when a team's working model is transformed into agile, I don't rush to apply it to my own teams. I apply it when I am convinced by the results of my observations.' **(P13)**

(4) Design Thinking: One of the important approaches that I often use to generate new ideas and validate them is Design Thinking.' **(P9)**

(5) Artificial Intelligence Support: 'I receive support from artificial intelligence throughout this entire process.' **(P3)**

(6) Resistance to Innovation: Personally, I am not very open to innovation, and I instinctively react to it with criticism and resistance.' **(P1)**

(7) Internalization: I have certain criteria for internalizing an idea or product before testing it. For example, what does it need to work, what information will it take from me, is its purpose of using singular or can it be used interactively in an integrated manner (as part of a whole).' **(P8)**

The final main category is consumer purchasing intent, which has five subcategories. These subcategories are as follows: (1) Aesthetic Deficiency, (2) Ethical and Social Responsibility, (3) Insecurity, (4) Hybrid Approach, and (5) Artificial Intelligence. Sample participant comments related to these subcategories are as follows:

(1) Lack of Aesthetics: When a design tool suggests a logo created with artificial intelligence, if I don't like it aesthetically, I prefer to work with real designers.' **(P2)**

(2) Ethics and Social Responsibility: Since there is no need to conform to ethical values or to live by them, I view the outputs or content produced as numerical and textual results.' **(P13)**

(3) Distrust: 'I can say that if I understand – if I know – that a product's promotion is done by artificial intelligence, I think I would be more hesitant to buy it. Because I would think that it is based on predictions of human experiences (produced by artificial intelligence) rather than actual human experiences.' **(P12)**

(4) Hybrid Approach: For this reason, it is necessary to utilize artificial intelligence in purchasing processes through a hybrid approach.' **(P11)**

(5) Artificial Intelligence: 'I see the suggestions offered by artificial intelligence as a helpful tool, but I make the final decision based on my own research.' **(P3)**

5. Conclusion and Discussion

Innovative business behavior (IWB) is critical in enabling a business to differentiate itself in the market and gain a competitive advantage through new ideas and practices. Products and services developed through IWB also attract consumers' attention and positively influence their purchasing intentions. In other words, IWB in businesses positively influences customer experiences and purchase intentions by effectively impacting factors such as product and service improvement, brand image, and competitive advantage. It is therefore possible to say that the path to customer purchase intent is paved by the innovative behavior

exhibited by employees. However, upon reviewing the relevant literature, it is possible to state that studies conducted on this subject remain limited in scope (Yam et al., 2021; Kim et al., 2022; Seymour et al., 2021; Natale et al., 2023; Song and Shin, 2024; Pavlidou, 2021; Zhu, 2024). However, it is critically important to consider the variables that develop within the process, which begins with IWB and ends with consumer purchase intent, from a theoretical perspective. For example, the uncanny valley theory (UVT) is the most obvious indicator of this situation. In other words, UVT is of explanatory importance in terms of the type, level and direction of the relationship in question. According to UVT, consumers initially respond positively to innovative products that resemble humans. However, as human similarity increases and the product enters the zone of uncertainty and discomfort known as the 'uncanny valley,' a significant decline in purchase intent is observed. This situation stems from consumers' uncertainty, discomfort and even fear towards products that are highly human-like but not perfect. Indeed, the findings obtained in this study support this conclusion. For example, when examining participant quotes related to UVT, it can be stated that artificial intelligence-supported innovative products contain uncertainty, cause anxiety, worry and unease, are unreliable, devalue products and services, and lack emotional intelligence. This situation indicates that innovative behaviors developed through artificial intelligence and the products and services resulting from these behaviors are not being adopted by consumers. Indeed, sub-themes such as ethical and social responsibility, aesthetic deprivation, and insecurity, which appear in the participants' quotes regarding IWB, support this situation. Finally, participant comments regarding consumer purchase intent also point to similar results. For example, the impossibility of transferring experience, resistance to innovation, uncertainty and insecurity are some of the underlying themes. Therefore, the research results reveal that IWB is a complex process that influences consumer purchase intentions. When evaluating innovative products, consumers consider not only the functionality of the product, but also factors such as human similarity, reliability, emotional appeal, ease of use, and social acceptability. Businesses that take these factors into account when designing and marketing their innovative products can positively influence consumers' purchasing intentions. Furthermore, the findings of the study show that UVT may apply not only to robots and artificial intelligence products, but also to other innovative product categories (e.g., virtual reality, augmented reality, biotechnology products). It is predicted that consumers may respond similarly to any innovative product that is highly human-like and creates uncertainty.

6. Limitations and Recommendations

This study has some limitations. The first is that the study was designed as a qualitative research sample. It is recommended that future studies be conducted using quantitative research methods in a longitudinal category and through different variables. The second is that the study was conducted within the scope of UVT. In this regard, it is recommended that future studies be conducted from different theoretical perspectives. The third, last and most important limitation is that the research was conducted within a specific geographical culture. In other words, it can be stated that the findings obtained because of this research were shaped within

a specific cultural framework. For this reason, it can be stated that it is critically important that subsequent research be conducted in different cultural contexts and environments. In summary, the importance of consumer perception towards innovative products in a cultural context should not be denied.

References

Armstrong, J. S. (1970). How to avoid exploratory research. *Journal of Advertising Research*, 10(4), 27-30.

Bae, S., Jung, T., Cho, J., Kwon, O. (2024). Effects of meta-human characteristics on user acceptance: from the perspective of uncanny valley theory. *Behavior & Information Technology*, 1-18.

Bartneck, C., Kanda, T., Ishiguro, H., Hagita, N. (2009). My robotic doppelgänger—A critical look at the uncanny valley. In *Proceedings of the 18th IEEE International Symposium on Robot and Human Interactive Communication* (pp. 269–276). IEEE.

Bartneck, C., Kulić, D., Croft, E., Zoghbi, S. (2009). Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. *International Journal of Social Robotics*, 1, 71–81.

Berg, B. L. and Lune, H. (2015). *Sosyal bilimlerde nitel araştırma yöntemleri*. (Çev. Aydin H.). Konya: Eğitim Yayınevi.

Braun, R. and Dickmann, J. S. (2019). The impact of the uncanny valley on consumer behavior: How mind attribution of humanoid robots impacts product evaluations [Master's thesis, Copenhagen Business School].

Büyükbese, T. and Doğan, Ö. (2022). Dijital liderliğin yenilikçi iş davranışları ve iş performansı üzerine etkisi. *Akademik Araştırmalar ve Çalışmalar Dergisi* (AKAD), 14(26), 173–186.

Büyüköztürk, S., Gelincik, A., Demirtürk, M., Kocaturk, E., Colakoğlu, B., Dal, M. (2012). Omalizumab markedly improves urticaria activity scores and quality of life scores in chronic spontaneous urticaria patients: A real life survey. *The Journal of Dermatology*, 39(5), 439-442.

Cascio, W. F. and Montealegre, R. (2016). How technology is changing work and organizations. *Annual Review of Organizational Psychology and Organizational Behavior*, 3, 349-375.

Choi, J., H. J. Lee, H. W. Kim. 2017. "Examining the Effects of Personalized app Recommender Systems on Purchase Intention: A Self and Social-Interaction Perspective." *Journal of Electronic Commerce Research* 18 (1): 73–102.

Correa Gonzalez, J. (2022). Human-likeness realism of digital assistants' interface: Effects on customer experience, trust in digital assistants and purchase intention [Doctoral dissertation, Open Access Te Herenga Waka-Victoria University of Wellington].

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS Quarterly*, 13(3), 319-340.

De Jong, J. P. and Den Hartog, D. N. (2007). How leaders influence employees' innovative behaviour. *European Journal of Innovation Management*, 10(1), 41–64.

De Jong, J. P. and Den Hartog, D. N. (2010). Measuring innovative work behaviour. *Creativity and Innovation Management*, 19(1), 23–36

Di Natale, A. F., Simonetti, M. E., La Rocca, S., Bricolo, E. (2023). Uncanny valley effect: A qualitative synthesis of empirical research to assess the suitability of using virtual faces in psychological research. *Computers in Human Behavior Reports*, 10, 100288.

El Hedhli, K., H. Zourrig, A. Al-Khateeb, I. Alnawas. 2023. "Stereotyping Human-Like Virtual Influencers in Retailing: Does Warmth Prevail Over Competence?" *Journal of Retailing and Consumer Services* 75: 103459.

Erdinç, E. D. and Soydaş, A. U. (2024). Tekinsiz Vadı Teorisi bağlamında yapay zeka etkileyicileri. *Selçuk İletişim*, 17(1), 1–38.

Ghazizadeh, M., Lee, J. D., Boyle, L. N. (2012). Extending the technology acceptance model to assess automation. *Cognition, Technology & Work*, 14, 39-49.

Gutuleac, R., Baima, G., Rizzo, C., Bresciani, S. (2024). Will virtual influencers overcome the uncanny valley? The moderating role of social cues. *Psychology & Marketing*.

Hancock, P. A., Billings, D. R., Schaefer, K. E., Chen, J. Y., De Visser, E. J., Parasuraman, R. (2011). A meta-analysis of factors affecting trust in human-robot interaction. *Human factors*, 53(5), 517-527.

Ho, C. C. and MacDorman, K. F. (2010). Revisiting the uncanny valley theory: Developing and validating an alternative to the Godspeed indices. *Computers in Human Behavior*, 26(6), 1508–1518.

Ho, C. C. and MacDorman, K. F. (2017). Measuring the uncanny valley effect: Refinements to indices for perceived humanness, attractiveness, and eeriness. *International Journal of Social Robotics*, 9, 129–139.

Jang, H., Jin, E., Bright, L., Wilcox, G. (2023). Sponsored by a robot? How the human likeness of virtual influencers influences purchase intentions towards sponsored products. *Journal of AI, Robotics & Workplace Automation*, 2(3), 215–227.

Janssen, O. (2000). Job demands, perceptions of effort-reward fairness and innovative work behaviour. *Journal of Occupational and Organizational Psychology*, 73(3), 287–302.

Kambar, R. (2016). Tüketici Yenilikçiliği ve Ürün İlgileniminin Marka Sadakati Üzerindeki Etkisi, (Yayınlanmış Doktora Tezi). Kocaeli Üniversitesi Sosyal Bilimler Enstitüsü, Kocaeli.

Kätsyri, J., Förger, K., Mäkäräinen, M., Takala, T. (2015). A review of empirical evidence on different uncanny valley hypotheses: Support for perceptual mismatch as one road to the valley of eeriness. *Frontiers in Psychology*, 6, 390.

Kim, B., de Visser, E., Phillips, E. (2022). Two uncanny valleys: Re-evaluating the uncanny valley across the full spectrum of real-world human-like robots. *Computers in Human Behavior*, 135, 107340.

Kim, W., Y. Ryoo, S. Lee, J.A. Lee. (2023). Chatbot advertising as a double-edged sword: The roles of regulatory focus and privacy concerns. *Journal of Advertising* 52, no. 4: 504–22.

Kim, W., Ryoo, Y., Choi, Y. K. (2024). That uncanny valley of mind: when anthropomorphic AI agents disrupt personalized advertising. *International Journal of Advertising*, 1-30.

Kumar, P. and Jhawar, A. (2024). Avatar–human interaction: Bibliometric review and future research avenues through the theory–context–methods lens. *International Journal of Human–Computer Interaction*, 1–15.

Lazarus, R. S. and Folkman, S. (1984). Stress, appraisal, and coping. Springer publishing company.

Lou, C., Kiew, S. T. J., Chen, T., Lee, T. Y. M., Ong, J. E. C., Phua, Z. (2023). Authentically fake? How consumers respond to the influence of virtual influencers. *Journal of Advertising*, 52(4), 540-557.

Luo, X., Tong, S., Fang, Z., Qu, Z. (2019). Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. *Marketing Science*, 38(6), 937–947.

MacDorman, K. F. and Chattopadhyay, D. (2016). Reducing consistency in human realism increases the uncanny valley effect; increasing category uncertainty does not. *Cognition*, 146, 190-205.

Mara, M., Appel, M., Gnambs, T. (2022). Human-like robots and the uncanny valley. *Zeitschrift für Psychologie*.

Merriam, S. B. (2015). Qualitative research: Designing, implementing, and publishing a study. In *Handbook of research on scholarly publishing and research methods* (pp. 125-140). IGI Global.

Miles, M. B. and Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. sage.

Mori, M. (1970). The uncanny valley. *Energy*, 7(4), 33-35.

Mori, M., MacDorman, K. F., Kageki, N. (2012). The uncanny valley [From the field]. *IEEE Robotics & Automation Magazine*, 19(2), 98–100.

Moustakas, C. (1994). Phenomenological research methods. sage.

Nass, C. and Moon, Y. (2000). Machines and mindlessness: Social responses to computers. *Journal of social issues*, 56(1), 81–103.

Nissen, A. and Jahn, K. (2021). Between anthropomorphism, trust, and the uncanny valley: A dual-processing perspective on perceived trustworthiness and its mediating effects on use intentions of social robots. In *Proceedings of the 54th Hawaii International Conference on System Sciences* (pp. 360–369).

Pan, S., Qin, Z., Zhang, Y. (2024). More realistic, more better? How anthropomorphic images of virtual influencers impact the purchase intentions of consumers. *Journal of Theoretical and Applied Electronic Commerce Research*, 19(4), 3229–3252.

Pavlidou, P. (2021). The Uncanny Valley: The Human-Likeness of Chatbots and Its Paradoxical Impact on Consumers' Purchase Intention in E-Commerce (Doctoral dissertation, Master's Thesis, Tilburg University).

Poushneh, A. and Gearhart, R. S. (2025). Semi-human artificial intelligence: The effect of search modality (text vs. voice) on perceived eeriness and consumers' purchase intention. *Journal of Consumer Behaviour*.

Saygin, A. P., Chaminade, T., Ishiguro, H., Driver, J., Frith, C. (2012). The thing that should not be: Predictive coding and the uncanny valley in perceiving human and humanoid robot actions. *Social Cognitive and Affective Neuroscience*, 7(4), 413–422.

Schuler, R. S. (1982). An integrative transactional process model of stress in organizations. *Journal of Organizational Behavior*, 3(1), 5-19.

Scott, S. G. and Bruce, R. A. (1994). Determinants of innovative behavior: A path model of individual innovation in the workplace. *Academy of Management Journal*, 37(3), 580–607.

Seymour, M., Yuan, L. I., Dennis, A., Riemer, K. (2021). Have we crossed the uncanny valley? Understanding affinity, trustworthiness, and preference for realistic digital humans in immersive environments. *Journal of the Association for Information Systems*, 22(3), 9.

Sohn, K. and Kwon, O. (2020). Technology acceptance theories and factors influencing artificial intelligence-based intelligent products. *Telematics and Informatics*, 47, 101324.

Song, S. W. and Shin, M. (2022). Uncanny valley effects on chatbot trust, purchase intention, and adoption intention in the context of ECommerce: the

moderating role of avatar familiarity. *International Journal of Human–Computer Interaction*, 1–16.

Song, S. W. and Shin, M. (2024). Uncanny valley effects on chatbot trust, purchase intention, and adoption intention in the context of e-commerce: The moderating role of avatar familiarity. *International Journal of Human–Computer Interaction*, 40(2), 441-456.

Song, Y., Wang, L., Zhang, Z., Hikkerova, L. (2024). AI or human: How endorser shapes online purchase intention? *Computers in Human Behavior*, 158, 108300.

Spears, N. and S. N. Singh. 2004. “Measuring Attitude toward the Brand and Purchase Intentions.” *Journal of Current Issues & Research in Advertising* 26 (2):53–66.

Sun, Y. and Xiao, C. (2024). Uncanny valley curve or linear relationship? The different influences of robots’ human-likeness on mind perception and visuospatial perspective-taking. *International Journal of Human–Computer Interaction*, 1–13.

Thaler, M., Schlägl, S., Groth, A. (2020, September). Agent vs. avatar: Comparing embodied conversational agents concerning characteristics of the uncanny valley. In 2020 IEEE International Conference on Human-Machine Systems (ICHMS) (pp. 1–6). IEEE.

Thomas, V. L. and K. Fowler. 2021. “Close Encounters of the AI Kind: Use of AI Influencers as Brand Endorsers.” *Journal of Advertising* 50, no. 1: 11–25.

Tong, A., Sainsbury, P., Craig, J. (2007). Consolidated criteria for reporting qualitative research (COREQ): a 32-item checklist for interviews and focus groups. *International journal for quality in health care*, 19(6), 349-357.

Ulusal, E. and Yüreğir, O. (2020). Yenilikçi iş davranışını belirleyen faktörlerin ağırlıklandırılması. *Endüstri Mühendisliği Dergisi*, 31(0), 17–31.

Venkatesh, V. and Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. *Management Science*, 46(2), 186-204.

Vial, G. (2019). Understanding digital transformation: A review and a research agenda. *The Journal of Strategic Information Systems*, 28(2), 118-144.

West, M. A. (1989). Innovation amongst health care professionals. *Social Behaviour*, 4, 173–184.

West, M. A. andFarr, J. L. (1989). Innovation at work: Psychological perspectives. *Social Behaviour*, 4, 15–30.

Yam, K. C., Bigman, Y., Gray, K. (2021). Reducing the uncanny valley by dehumanizing humanoid robots. *Computers in Human Behavior*, 125, 106945.

Yapraklı, Ş. and Gül, B. (2021). Tüketici yenilikçiliği, algılanan risk ve ürün ilgileniminin online satın alma davranışının üzerindeki etkisi. *Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi*, 9(5), 1507-1534.

Yuan, F. and Woodman, R. W. (2010). Innovative behavior in the workplace: The role of performance and image outcome expectations. *Academy of Management Journal*, 53(2), 323–342.

Zhang, Y. and Wang, X. (2025). The effect of virtual anchor appearance on purchase intention: a perceived warmth and competence perspective. *Journal of Product & Brand Management*, 34(1), 84-103.

Zhu, Y. (2024). The Interaction of Influencer Types, Advertising Appeals and Product Types on Consumer Purchase Intention from the Perspective of HSM Theory. *Academic Journal of Humanities & Social Sciences*, 7(5), 113-122.